Copied to
clipboard

G = C2×C425C4order 128 = 27

Direct product of C2 and C425C4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2×C425C4, C24.642C23, C23.164C24, (C2×C42)⋊15C4, C4241(C2×C4), C22.55(C23×C4), (C22×C42).10C2, C23.356(C4○D4), (C22×C4).442C23, (C23×C4).644C22, C23.281(C22×C4), (C2×C42).1000C22, C22.66(C42⋊C2), C22.29(C422C2), C2.C42.463C22, C2.1(C2×C422C2), C22.57(C2×C4○D4), (C2×C4).486(C22×C4), (C22×C4).452(C2×C4), C2.10(C2×C42⋊C2), (C2×C2.C42).8C2, SmallGroup(128,1014)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2×C425C4
C1C2C22C23C24C23×C4C22×C42 — C2×C425C4
C1C22 — C2×C425C4
C1C24 — C2×C425C4
C1C23 — C2×C425C4

Generators and relations for C2×C425C4
 G = < a,b,c,d | a2=b4=c4=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc2, dcd-1=b2c-1 >

Subgroups: 492 in 312 conjugacy classes, 180 normal (6 characteristic)
C1, C2, C4, C22, C22, C2×C4, C2×C4, C23, C23, C42, C22×C4, C22×C4, C24, C2.C42, C2×C42, C23×C4, C2×C2.C42, C425C4, C22×C42, C2×C425C4
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, C24, C42⋊C2, C422C2, C23×C4, C2×C4○D4, C425C4, C2×C42⋊C2, C2×C422C2, C2×C425C4

Smallest permutation representation of C2×C425C4
Regular action on 128 points
Generators in S128
(1 15)(2 16)(3 13)(4 14)(5 90)(6 91)(7 92)(8 89)(9 20)(10 17)(11 18)(12 19)(21 77)(22 78)(23 79)(24 80)(25 54)(26 55)(27 56)(28 53)(29 76)(30 73)(31 74)(32 75)(33 60)(34 57)(35 58)(36 59)(37 64)(38 61)(39 62)(40 63)(41 112)(42 109)(43 110)(44 111)(45 116)(46 113)(47 114)(48 115)(49 100)(50 97)(51 98)(52 99)(65 123)(66 124)(67 121)(68 122)(69 119)(70 120)(71 117)(72 118)(81 105)(82 106)(83 107)(84 108)(85 101)(86 102)(87 103)(88 104)(93 127)(94 128)(95 125)(96 126)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 52 57 29)(2 49 58 30)(3 50 59 31)(4 51 60 32)(5 105 46 66)(6 106 47 67)(7 107 48 68)(8 108 45 65)(9 61 26 78)(10 62 27 79)(11 63 28 80)(12 64 25 77)(13 97 36 74)(14 98 33 75)(15 99 34 76)(16 100 35 73)(17 39 56 23)(18 40 53 24)(19 37 54 21)(20 38 55 22)(41 69 127 104)(42 70 128 101)(43 71 125 102)(44 72 126 103)(81 113 124 90)(82 114 121 91)(83 115 122 92)(84 116 123 89)(85 109 120 94)(86 110 117 95)(87 111 118 96)(88 112 119 93)
(1 65 11 119)(2 105 12 85)(3 67 9 117)(4 107 10 87)(5 62 94 51)(6 80 95 29)(7 64 96 49)(8 78 93 31)(13 121 20 71)(14 83 17 103)(15 123 18 69)(16 81 19 101)(21 44 73 115)(22 127 74 89)(23 42 75 113)(24 125 76 91)(25 120 58 66)(26 86 59 106)(27 118 60 68)(28 88 57 108)(30 48 77 111)(32 46 79 109)(33 122 56 72)(34 84 53 104)(35 124 54 70)(36 82 55 102)(37 126 100 92)(38 41 97 116)(39 128 98 90)(40 43 99 114)(45 61 112 50)(47 63 110 52)

G:=sub<Sym(128)| (1,15)(2,16)(3,13)(4,14)(5,90)(6,91)(7,92)(8,89)(9,20)(10,17)(11,18)(12,19)(21,77)(22,78)(23,79)(24,80)(25,54)(26,55)(27,56)(28,53)(29,76)(30,73)(31,74)(32,75)(33,60)(34,57)(35,58)(36,59)(37,64)(38,61)(39,62)(40,63)(41,112)(42,109)(43,110)(44,111)(45,116)(46,113)(47,114)(48,115)(49,100)(50,97)(51,98)(52,99)(65,123)(66,124)(67,121)(68,122)(69,119)(70,120)(71,117)(72,118)(81,105)(82,106)(83,107)(84,108)(85,101)(86,102)(87,103)(88,104)(93,127)(94,128)(95,125)(96,126), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,52,57,29)(2,49,58,30)(3,50,59,31)(4,51,60,32)(5,105,46,66)(6,106,47,67)(7,107,48,68)(8,108,45,65)(9,61,26,78)(10,62,27,79)(11,63,28,80)(12,64,25,77)(13,97,36,74)(14,98,33,75)(15,99,34,76)(16,100,35,73)(17,39,56,23)(18,40,53,24)(19,37,54,21)(20,38,55,22)(41,69,127,104)(42,70,128,101)(43,71,125,102)(44,72,126,103)(81,113,124,90)(82,114,121,91)(83,115,122,92)(84,116,123,89)(85,109,120,94)(86,110,117,95)(87,111,118,96)(88,112,119,93), (1,65,11,119)(2,105,12,85)(3,67,9,117)(4,107,10,87)(5,62,94,51)(6,80,95,29)(7,64,96,49)(8,78,93,31)(13,121,20,71)(14,83,17,103)(15,123,18,69)(16,81,19,101)(21,44,73,115)(22,127,74,89)(23,42,75,113)(24,125,76,91)(25,120,58,66)(26,86,59,106)(27,118,60,68)(28,88,57,108)(30,48,77,111)(32,46,79,109)(33,122,56,72)(34,84,53,104)(35,124,54,70)(36,82,55,102)(37,126,100,92)(38,41,97,116)(39,128,98,90)(40,43,99,114)(45,61,112,50)(47,63,110,52)>;

G:=Group( (1,15)(2,16)(3,13)(4,14)(5,90)(6,91)(7,92)(8,89)(9,20)(10,17)(11,18)(12,19)(21,77)(22,78)(23,79)(24,80)(25,54)(26,55)(27,56)(28,53)(29,76)(30,73)(31,74)(32,75)(33,60)(34,57)(35,58)(36,59)(37,64)(38,61)(39,62)(40,63)(41,112)(42,109)(43,110)(44,111)(45,116)(46,113)(47,114)(48,115)(49,100)(50,97)(51,98)(52,99)(65,123)(66,124)(67,121)(68,122)(69,119)(70,120)(71,117)(72,118)(81,105)(82,106)(83,107)(84,108)(85,101)(86,102)(87,103)(88,104)(93,127)(94,128)(95,125)(96,126), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,52,57,29)(2,49,58,30)(3,50,59,31)(4,51,60,32)(5,105,46,66)(6,106,47,67)(7,107,48,68)(8,108,45,65)(9,61,26,78)(10,62,27,79)(11,63,28,80)(12,64,25,77)(13,97,36,74)(14,98,33,75)(15,99,34,76)(16,100,35,73)(17,39,56,23)(18,40,53,24)(19,37,54,21)(20,38,55,22)(41,69,127,104)(42,70,128,101)(43,71,125,102)(44,72,126,103)(81,113,124,90)(82,114,121,91)(83,115,122,92)(84,116,123,89)(85,109,120,94)(86,110,117,95)(87,111,118,96)(88,112,119,93), (1,65,11,119)(2,105,12,85)(3,67,9,117)(4,107,10,87)(5,62,94,51)(6,80,95,29)(7,64,96,49)(8,78,93,31)(13,121,20,71)(14,83,17,103)(15,123,18,69)(16,81,19,101)(21,44,73,115)(22,127,74,89)(23,42,75,113)(24,125,76,91)(25,120,58,66)(26,86,59,106)(27,118,60,68)(28,88,57,108)(30,48,77,111)(32,46,79,109)(33,122,56,72)(34,84,53,104)(35,124,54,70)(36,82,55,102)(37,126,100,92)(38,41,97,116)(39,128,98,90)(40,43,99,114)(45,61,112,50)(47,63,110,52) );

G=PermutationGroup([[(1,15),(2,16),(3,13),(4,14),(5,90),(6,91),(7,92),(8,89),(9,20),(10,17),(11,18),(12,19),(21,77),(22,78),(23,79),(24,80),(25,54),(26,55),(27,56),(28,53),(29,76),(30,73),(31,74),(32,75),(33,60),(34,57),(35,58),(36,59),(37,64),(38,61),(39,62),(40,63),(41,112),(42,109),(43,110),(44,111),(45,116),(46,113),(47,114),(48,115),(49,100),(50,97),(51,98),(52,99),(65,123),(66,124),(67,121),(68,122),(69,119),(70,120),(71,117),(72,118),(81,105),(82,106),(83,107),(84,108),(85,101),(86,102),(87,103),(88,104),(93,127),(94,128),(95,125),(96,126)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,52,57,29),(2,49,58,30),(3,50,59,31),(4,51,60,32),(5,105,46,66),(6,106,47,67),(7,107,48,68),(8,108,45,65),(9,61,26,78),(10,62,27,79),(11,63,28,80),(12,64,25,77),(13,97,36,74),(14,98,33,75),(15,99,34,76),(16,100,35,73),(17,39,56,23),(18,40,53,24),(19,37,54,21),(20,38,55,22),(41,69,127,104),(42,70,128,101),(43,71,125,102),(44,72,126,103),(81,113,124,90),(82,114,121,91),(83,115,122,92),(84,116,123,89),(85,109,120,94),(86,110,117,95),(87,111,118,96),(88,112,119,93)], [(1,65,11,119),(2,105,12,85),(3,67,9,117),(4,107,10,87),(5,62,94,51),(6,80,95,29),(7,64,96,49),(8,78,93,31),(13,121,20,71),(14,83,17,103),(15,123,18,69),(16,81,19,101),(21,44,73,115),(22,127,74,89),(23,42,75,113),(24,125,76,91),(25,120,58,66),(26,86,59,106),(27,118,60,68),(28,88,57,108),(30,48,77,111),(32,46,79,109),(33,122,56,72),(34,84,53,104),(35,124,54,70),(36,82,55,102),(37,126,100,92),(38,41,97,116),(39,128,98,90),(40,43,99,114),(45,61,112,50),(47,63,110,52)]])

56 conjugacy classes

class 1 2A···2O4A···4X4Y···4AN
order12···24···44···4
size11···12···24···4

56 irreducible representations

dim111112
type++++
imageC1C2C2C2C4C4○D4
kernelC2×C425C4C2×C2.C42C425C4C22×C42C2×C42C23
# reps16811624

Matrix representation of C2×C425C4 in GL6(𝔽5)

400000
040000
004000
000400
000010
000001
,
400000
010000
000200
003000
000042
000041
,
400000
010000
000400
001000
000030
000003
,
200000
010000
000300
003000
000042
000001

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,2,0,0,0,0,0,0,0,4,4,0,0,0,0,2,1],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,0,2,1] >;

C2×C425C4 in GAP, Magma, Sage, TeX

C_2\times C_4^2\rtimes_5C_4
% in TeX

G:=Group("C2xC4^2:5C4");
// GroupNames label

G:=SmallGroup(128,1014);
// by ID

G=gap.SmallGroup(128,1014);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,344,758,100]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^2,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽